TYROSINE PHOSPHORYLATION REGULATES PHOSPHOLIPASE C ACTIVATION IN HUMAN T-CELLS

Jeffrey A. Ledbetter, Laura S. Grosmaire, Theta T. Tsu and Gary L. Schieven
Oncogen Division, Bristol–Myers Squibb Pharmaceutical Research Institute, 3005 First Avenue, Seattle, WA 98121, U.S.A.

Introduction
One early transmembrane signal in response to stimulation of the T-cell antigen receptor (CD3/Ti) is the activation of phosphatidylinositol (PtdIns)-specific phospholipase C (PLC). The resulting formation of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and diacylglycerol (DAG) causes calcium release from internal stores, calcium influx through calcium channels, and translocation of protein kinase C (PKC) to the plasma membrane (for a review, see [1]). Although this signal is associated with T-cell responses, several studies have shown that PLC activation can occur without resulting in cellular proliferation. For example, when immobilized anti-CD3 monoclonal antibodies (mAbs) are used for stimulation of T-cells, the PLC activation signal is prolonged and results in interleukin 2 (IL-2) receptor α-chain (CD25) expression, production of cytokines including IL-2 and T-cell autocrine proliferation [2, 3]. In contrast, when anti-CD3 mAbs are used in solution, the PLC activation signal is transient and does not result in T-cell autocrine proliferation. Rather, desensitization occurs, resulting in a period of non-responsiveness to stimulation of other receptors [4].

Transient activation of PLC also occurs in T-cells when other receptors such as CD2, CD5 or CD28 are cross-linked on the cell surface with specific mAbs [5]. These molecules have been implicated as receptors for accessory signals in T-cell activation, since mAb-mediated ligation can augment responses to CD3/Ti stimulation [6]. The CD2 and CD28 receptors are known to mediate cell–cell adhesion with antigen-presenting cells by binding to their co-receptors, the LFA-3 and the B7/BB1 molecules, respectively [7, 8]. Both LFA-3 and the B7/BB1 deliver transmembrane signals to T-cells through the CD2 or CD28 molecules [9, 10]. A normal ligand for CD5, however, has not yet been identified. All of these accessory receptors that activate PLC depend upon expression of CD3/Ti for their functional activity [4].

How are these T-cell surface receptors coupled to activation of PLC in the plasma membrane? Several studies have implicated GTP-binding G-proteins in the process, because non-hydrolysable GTP analogues or fluoroaluminate activate PLC either in T-cells or in T-cell membrane fractions (see [1] for a review). Additional evidence derives from experiments where CD3/Ti-negative Jurkat T-cells were transfected with one subtype of the muscarinic acetylcholine receptor, resulting in PLC activation and IL-2 secretion after stimulation with carbachol [11]. Because the muscarinic acetylcholine receptor is a G-protein-linked receptor, these studies indicate that T-cells contain G-protein(s) that can activate PLC, and that a PLC exists in T-cells that can be regulated by G-proteins. These data, however, do not show that the endogenous surface receptors linked to PLC activation in T-cells use this mechanism.

A second early transmembrane signal associated with stimulation of CD3/Ti is the rapid induction of tyrosine phosphorylation of specific substrates [12, 13]. A relationship between the activation of protein-tyrosine kinases and the activation of PLC in T-cells has been suggested from several studies over the past year. Immunoblots using specific anti-phosphotyrosine antibodies have revealed increased tyrosine phosphorylation on multiple proteins, including those of 145, 135, 100, 75 and 40 kDa, after CD3/Ti ligation [14]. The tyrosine phosphorylation was detectable at 5 s and was maximal at 90 s. The tyrosine phosphorylation preceded activation of PLC, since Ins(1,4,5)P3 was not detectable until 30 s after stimulation [14]. When inhibitors of protein-tyrosine kinases, including herbinycin A and genistein were tested with T-cells, inhibition of CD3-mediated PLC activation was observed [15, 16]. Herbinycin A is a benzoquinonoid ansamycin antibiotic that was found to reverse oncogenic transformation induced by pp60 v-src [17], and to both inhibit src kinase activity and induce degradation of the src protein. Herbinycin A completely inhibits CD3-mediated PLC activation in T-cells without preventing PLC activation by aluminium fluoride, and without preventing T-cell responses to ionomycin plus phorbol 12-myristate 13-acetate (PMA) [15]. Genistein, an unrelated protein-tyrosine kinase inhibitor, gives partial and transient inhibition of T-cell-receptor-induced PLC activation in T-cells. These data therefore suggest

Abbreviations used: PLC, phospholipase C; mAbs, monoclonal antibodies; IL-2, interleukin-2.

1991
that tyrosine phosphorylation is required for antigen-specific PLC activation in T-cells.

In this communication, we address the PLC activation signals induced in T-cells by cross-linking accessory receptors including CD2, CD28 and CD4. In each case, tyrosine phosphorylation is required for PLC activation, although differential sensitivity to inhibition by herbimycin A is shown. Evidence for the regulation of protein-tyrosine kinase activation by stimulation of these receptors, obtained by anti-phosphotyrosine immunoblotting of whole cell lysates, is also presented.

Results and discussion
Measurement of cytoplasmic calcium concentration ([Ca\(^{2+}\)]\(_i\)) with the indo-1 dye and a flow cytometer provides a very sensitive assay for the activation of PLC in T-cells [18]. To activate PLC by CD2, CD28 or CD4 receptor ligation, we used biotin-conjugated mAbs followed by an excess of avidin (Fig. 1). In this experiment, the signal from CD2 cross-linking was very strong, reaching a peak of >2000 nM-[Ca\(^{2+}\)]\(_i\), within 3 min of avidin addition. This response is a combination of intracellular calcium release and extracellular calcium influx [19]. The signal from the interaction of the CD3 and CD4 receptors, generated by cross-linking CD3 and CD4 together with an antibody hetero-

![Fig. 1](image1.png)

Inhibition of calcium mobilization in T-cells by Herbimycin A

Resting (G0) T-cells from peripheral blood were incubated with (---) or without (-----) Herbimycin A (1 μg/ml) for 16 h in RPMI containing 5% (v/v) fetal calf serum. The cells were then loaded with indo-1 and assayed for responses in cytoplasmic calcium concentration ([Ca\(^{2+}\)]\(_i\)) with a flow cytometer. Cells were stimulated with ionomycin, CD2 cross-linking with biotin-9.6, followed by avidin added at the arrow; CD3 × CD4 cross-linking with 5 μg of a heteroconjugate of mAbs G19-4 × G17-2, CD3 cross-linking with an IgM anti-CD3 mAb 38.1; CD28 cross-linking with biotin-9.3 followed by avidin added at the arrow; or CD4 cross-linking with biotin-G17-2 followed by avidin added at the arrow.

![Fig. 2](image2.png)

Tyrosine phosphorylation of substrates in HPB-ALL T-cells is regulated by the CD3/Ti and CD4 receptors

HPB-ALL cells were stimulated with a CD3 × CD3 homoconjugate of mAb G19-4 (10 μg/ml), a CD3 × CD4 heteroconjugate of mAbs G19-4 × G17-2 (10 μg/ml), or a CD4 × CD4 homoconjugate of mAb G17-2 (10 μg/ml). At 0 (before stimulation), 2 and 10 min after stimulation, 5 × 10\(^6\) cells were rapidly pelleted and lysed in SDS sample buffer. Polyacrylamide gels were run and protein was transferred to a PVDF filter. Tyrosine-phosphorylated proteins were detected by immunoblotting with purified rabbit anti-phosphotyrosine followed by 125I-labelled protein A. Molecular mass markers were included and their migration positions are indicated.
Peripheral blood mononuclear cells (containing 80–90% T-cells) were isolated by centrifugation on Ficoll and were then incubated at 10^6 cell/ml in RPMI with 5% (v/v) fetal bovine serum for 16 h in the indicated concentrations of herbimycin A. Stimulation of the cells was with IgM anti-CD3 mAb 38.1 (CD3) at an optimal concentration, by cross-linking CD2 using biotin-conjugated mAb 9.6 followed by avidin (CD2), or by a heteroconjugate of anti-CD3 × anti-CD4 mAbs G19-4 and G17-2 at 5 μg/ml (CD3 × CD4). Calcium responses after stimulation were measured with indo-1 and a flow cytometer. Maximal responses are shown calculated from programs that measure the percentage of responding cells and the mean calcium concentration [Ca^{2+}],. Basal [Ca^{2+}], of unstimulated cells was 130 nM.

Table I

<table>
<thead>
<tr>
<th>Herbimycin concentration (μg/ml)</th>
<th>Responding cells (%)</th>
<th>Calcium response</th>
<th>Peak mean [Ca^{2+}], (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CD3</td>
<td>CD2</td>
<td>CD3 × CD4</td>
</tr>
<tr>
<td>0</td>
<td>80</td>
<td>85</td>
<td>61</td>
</tr>
<tr>
<td>0.125</td>
<td>30</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>0.25</td>
<td>24</td>
<td>51</td>
<td>60</td>
</tr>
<tr>
<td>0.5</td>
<td><5</td>
<td>42</td>
<td>45</td>
</tr>
<tr>
<td>1.0</td>
<td><5</td>
<td>40</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>CD3</td>
<td>CD2</td>
<td>CD3 × CD4</td>
</tr>
<tr>
<td>0</td>
<td>840</td>
<td>1800</td>
<td>750</td>
</tr>
<tr>
<td>0.125</td>
<td>310</td>
<td>605</td>
<td>490</td>
</tr>
<tr>
<td>0.25</td>
<td>210</td>
<td>580</td>
<td>490</td>
</tr>
<tr>
<td>0.5</td>
<td>130</td>
<td>310</td>
<td>460</td>
</tr>
<tr>
<td>1.0</td>
<td>130</td>
<td>260</td>
<td>440</td>
</tr>
</tbody>
</table>

To examine the comparative sensitivity of these signals to Herbimycin A, a titration between 0.125 μg/ml and 1 μg/ml was used for the 16 h incubation. The CD3, CD2 and CD3 × CD4 signals were then compared at each Herbimycin concentration (Table I). A significant difference was readily apparent, since the CD3-induced signal was completely inhibited by 0.5 μg/ml, whereas the CD2 and CD3 × CD4-induced signals were only partially inhibited. In this experiment, the CD2 and CD3 × CD4 signals were still present even at 1 μg of Herbimycin A/ml. These results suggest that the accessory receptors on T-cells that are linked to PLC activation are not equally dependent on protein-tyrosine kinase activity, and that the strongest signals are more resistant to inhibitors of protein-tyrosine kinases.

Multiple isoenzymes of PLC have been characterized [20]. Although T-cells may contain a form such as PLCβ that is activated by a G-protein mechanism, it is clear that the CD3/Ti receptor-linked PLC must be closely related to PLCγ because the activity of this isoenzyme is directly regulated by tyrosine phosphorylation [21]. Our evidence suggests that the CD2, CD4, CD28 and other accessory receptors that are linked to PLC activation are also dependent upon first initiating protein-tyrosine kinase activation. Consistent with this idea are the observations that CD2 cross-linking induces tyrosine phosphorylation in T-cells [22], and that the CD4 and CD8 receptors are non-covalently associated with the protein-tyrosine kinase p56Lck [23]. Association of the CD4 or CD8 receptor with CD3/Ti enhances the activation of PLC [24], whereas similar CD3/Ti interaction with the CD45 protein-tyrosine phosphatase inhibits both the [Ca^{2+}], response and the activation of PLC [25].

Cross-linking of CD4 was shown to activate the associated p56Lck protein-tyrosine kinase and to induce tyrosine phosphorylation of specific cellular substrates [26]. Because the CD4 interaction with CD3/Ti results in enhanced PLC activation, we examined the effects of this interaction on induction of tyrosine phosphorylation. Fig. 2 shows that, in comparison with either CD4 or CD3/Ti cross-linking separately, the cross-linking of CD3 and CD4 together results in a much stronger signal. Tyrosine-phosphorylated proteins are detectable at 20 kDa, 35 kDa, 55 kDa, 67 kDa, 80 kDa, 105 kDa and 150 kDa in the HPB-ALL T-cells used for this experiment and are similar to the tyrosine-phosphorylated proteins seen in normal T-cells, Jurkat T-cells or CEM T-cells. PLC or regulators of PLC are likely to be included among these substrates of tyrosine kinases in T-cells.

Cross-talk between surface immunoglobulin and interleukin-4 receptors on murine B-lymphocytes

Gerry G. B. Klaus and Margaret M. Harnett
Division of Immunology, National Institute for Medical Research, Mill Hill, London, U.K.

Introduction

Interleukin 4 (IL-4) is a T-cell-derived lymphokine with pleiotropic effects on many different cell types (reviewed in [1]). One of the first activities ascribed to this factor was its capacity to act as a co-mitogen in B-lymphocytes, in conjunction with submitogenic concentrations of antibodies (anti-Ig) directed to the clonally distributed surface immunoglobulin receptors (sIgM and sIgD) on these cells. Ligation of sIg receptors provokes the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], with consequent elevation of intracellular Ca2+ and activation of protein kinase C (PKC), and this signalling cascade involves uncharacterized guanine nucleotide regulatory protein (reviewed in [2]). Little is known about the signal transduction mechanisms utilized by IL-4 receptors (IL-4R), especially in murine B-cells, where various studies have shown that IL-4 does not provoke PtdIns(4,5)P2 hydrolysis or PKC activation, nor does it detectably modulate PtdIns(4,5)P2 hydrolysis induced by anti-Ig [3–5]. In contrast, IL-4 has been shown to induce a short-lived burst of Ins(1,4,5)P3 release, followed by a prolonged elevation of cyclic AMP, in human B-cells [6].

The following experiments were therefore undertaken in an attempt to gain more information...