Optimisation of production of extracellular non-haem peroxidases by Thermomonospora fusca BD25 in aerobic bio-reactor conditions

MUNIR TUNCER1, ABDUL ROB1, ANDREW S. BALL1, ROBERT R. EADY2, NEVILLE HENDERSON2 AND MICHAEL T. WILSON1.

1Department of Biological and Chemical Sciences, University of Essex, Colchester, CO4 3SQ, UK.
2Nitrogen Fixation Units, John Innes Research Centre, Colney, Norwich, NR4 7UA, U.K.

Peroxidases are involved in redox reactions [1-2] and in particular the redox reaction of haem-containing horseradish peroxidase has been exploited in a diagnostic procedure such as serum cholesterol determination [3]. The current chemical techniques for the determination of serum cholesterol is subjected to various interference [4-6]. The use of biological catalysts such as horseradish peroxidase has substantially improved the results [7]. However, as horseradish peroxidase contains labile haem, it is subjected to denaturation by temperature and could give rise to falsely low results. The problem can be circumvented by using a thermostable peroxidase enzyme such as Thermomonospora fusca BD25 peroxidase [9]. However, the availability of this peroxidases is limited, since the enzyme is expressed at a very low level by T. fusca BD25 and detection in the extra-cellular supernatant is often difficult [10]. The problem can be overcome by optimisation of the growth conditions of T. fusca BD25 [11]. However, in-house optimisation could not allow precise monitoring of the growth parameters such as dissolved oxygen, temperature and pH. In this respect, the use of an automated bio-reactor would be helpful to resolve this problem. In this paper we describe the optimum bio-reactor conditions for the production of extra-cellular non-haem peroxidases.

Stock cultures of T. fusca BD25 were maintained as a suspension of spores and hyphal fragments in 20 % (v/v) glycerol at -20 °C and routinely cultured on L-agar plates or slants [12] with subsequent incubation at 45 °C for 48-72 hours or until sporulation had occurred. For peroxidase production in an automated bio-reactor suspensions, 50 ml (48 h old) liquid cultures of T. fusca BD25 was inoculated directly into a sterile production medium (1 L) based on that described by Ramachandra et al. [13]. The medium contained 8.0 g oat spelt xylan (Sigma); 6.0 g yeast extract (Oxoid); 0.1 g (NH4)2 SO4; 0.3 g NaCl; 0.1 g MgSO4?7H2O; 0.02 g CaCO3; 500 µl antifoam (204); 100 mM potassium phosphate buffer and 1 ml of trace element solution per litre of distilled-water, final pH of 7.5. The trace element solution contained 1.0 g FeSO4?7H2O; 0.9 g ZnSO4?7H2O; 0.2 g MnSO4?7H2O per litre of distilled-water. Inoculated cultures were incubated at 50 °C at 250 rpm with dissolved oxygen of either 50 % (v/v) or 5 % (v/v). The growth parameters during the exponential growth phase were carefully monitored and any deviations from the setting values automatically corrected.

The results of optimisation of the production of extra-cellular non-haem T. fusca BD25 peroxidases using an automated bio-reactor are shown in Figure 1. It should be noted from the graph that maximum peroxidase production (0.1 Uml-1) occurred after 36 h of incubation at 50 % (v/v) dissolved oxygen at a pH of 8.41; temperature 50 °C and agitation 250 rpm.

The level of enzyme production, however, falls rapidly after 42 h of incubation, reaching a minimum level at 60 h. The peroxidase level obtained from the bio-reactor experiment corresponds approximately to an increase of three fold with respect to in-house production level. Thus, the use of automated bio-reactor has reduced the time of production of this enzyme and significantly increased the expression level.

Figure 1: Optimisation of production of non-haem T.fusca BD25 peroxidases in a bio-reactor. Notice that the maximum peroxidase activity is noted after 36 h in 50 % (v/v) dissolved oxygen.

This work was supported by a BBSRS grant (grant no GR/J/84098) and a scholarship to M.T. from Mersin University, Turkey.

REFERENCES