Biochemical Society Focused Meetings

Compartmentalization of Cyclic AMP Signalling
King’s College, Cambridge, U.K., 29–30 March 2006

Edited by D. Cooper (Cambridge, U.K.)

Compartmentalized cAMP signalling: a personal perspective
J.D. Scott 465–467

Use of single-cell imaging techniques to assess the regulation of cAMP dynamics
D. Willoughby and D.M.F. Cooper 468–471

Peptides for disruption of PKA anchoring
C. Hundsrucker, W. Rosenthal and E. Klussmann 472–473

Phosphodiesterase-4 gates the ability of protein kinase A to phosphorylate
G-protein receptor kinase-2 and influence its translocation
M.D. Houslay and G.S. Baillie 474–475

The molecular machinery for cAMP-dependent immunomodulation in T-cells
K. Taskén and A.J. Stokka 476–479

Layers of organization of cAMP microdomains in a simple cell
A.C.L. Martin and D.M.F. Cooper 480–483

Functional localization of cAMP signalling in cardiac myocytes
G. Vandecasteele, F. Rochais, A. Abi-Gerges and R. Fischmeister 484–488

Compartmentalized cAMP signalling is important in the regulation of Ca^{2+} cycling
in the heart
B. Lygren and K. Taskén 489–491

Soluble adenylate cyclase reveals the significance of compartmentalized cAMP on
endothelial cell barrier function
S. Sayner and T. Stevens 492–494

Restricted diffusion of a freely diffusible second messenger: mechanisms
underlying compartmentalized cAMP signalling
M. Zaccolo, G. Di Benedetto, V. Lissandron, L. Mancuso, A. Terrin and I. Zamparo 495–497

cAMP oscillations restrict protein kinase A redistribution in insulin-secreting cells

Identification of the macromolecular complex responsible for PI3Kγ-dependent
regulation of cAMP levels
A. Perino, A. Ghigo, F. Damilano and E. Hirsch 502–503
cAMP phosphodiesterase-4A1 (PDE4A1) has provided the paradigm for the intracellular targeting of phosphodiesterases, a process that underpins compartmentalized cAMP signalling

E. Huston, T.M. Houslay, G.S. Baillie and M.D. Houslay 504–509

A complex phosphodiesterase system controls β-adrenoceptor signalling in cardiomyocytes

M. Mongillo and M. Zaccolo 510–511

cGMP signalling in a transporting epithelium

S.-A. Davies and J.P. Day 512–514

Signalling from parathyroid hormone

S.C. Tovey, S.G. Dedos and C.W. Taylor 515–517

Meiosisis and the Causes and Consequences of Recombination

University of Warwick, U.K., 29–31 March 2006

Edited by D. Monckton (Glasgow, U.K.)

Why have sex? The population genetics of sex and recombination

S.P. Otto and A.C. Gerstein 519–522

Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation

S. Keeney and M.J. Neale 523–525

The distribution and causes of meiotic recombination in the human genome

S. Myers, C.C.A. Spencer, A. Auton, L. Bottolo, C. Freeman, P. Donnelly and G. McVean 526–530

Meiotic recombination hotspots in plants

C. Mézard 531–534

Human polymorphism around recombination hotspots

C.C.A. Spencer 535–536

Crossover promotion and prevention

A. Lorenz and M.C. Whitby 537–541

Control of meiotic recombination in *Arabidopsis*: role of the MutL and MutS homologues

Initiation of homologous chromosome pairing during meiosis

P. Jordan 545–549

Factors directing telomere dynamics in synaptic meiosis

H. Scherthan 550–553

Balancing the checks: surveillance of chromosomal exchange during meiosis

G.V. Börner 554–556

Analysis of a cross between green and red fluorescent trypanosomes

W. Gibson, L. Peacock, V. Ferris, K. Williams and M. Bailey 557–559
Effects of intra-gene fitness interactions on the benefit of sexual recombination
R.A. Watson, D.M. Weinreich and J. Wakeley 560–561

Sex-ratio meiotic drive in Drosophila simulans: cellular mechanism, candidate genes and evolution
C. Montchamp-Moreau 562–565

Why Mendelian segregation?
F. Úbeda 566–568

Genetic conflicts during meiosis and the evolutionary origins of centromere complexity
H.S. Malik and J.J. Bayes 569–573

Meiosis in mammals: recombination, non-disjunction and the environment
P.A. Hunt 574–577

Relationship of recombination patterns and maternal age among non-disjoined chromosomes 21
S.L. Sherman, N.E. Lamb and E. Feingold 578–580

Intra-allelic mutation at human telomeres
B. Britt-Compton and D.M. Baird 581–582

Differential mitotic checkpoint protein requirements in somatic and germ cells
K.B. Jeganathan and J.M. van Deursen 583–586

Neurotrophins: Mechanisms in Disease and Therapy
School of Chemistry, Bristol, U.K., 6 April 2006

Edited by D. Dawbarn (Bristol)

NGF receptor TrkAd5: therapeutic agent and drug design target

Neuro-immune interaction in allergic asthma: role of neurotrophins
C. Nassenstein, J. Kutschker, D. Tumes and A. Braun 591–593

The contribution of neurotrophins to the pathogenesis of allergic asthma
S. Rochlitzer, C. Nassenstein and A. Braun 594–599

Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain
J. Soulé, E. Messaoudi and C.R. Bramham 600–604

Structural and functional properties of mouse proNGF
F. Paoletti, P.V. Konarev, S. Covaceuszach, E. Schwarz, A. Cattaneo, D. Lamba and D.I. Svergun 605–606

Mechanisms of neurotrophin receptor signalling
N. Zampieri and M.V. Chao 607–611

Functional mimetics of neurotrophins and their receptors
J. Peleshok and H.U. Saragovi 612–617