Regulation by Per-Arnt-Sim (PAS) kinase of pancreatic duodenal homeobox-1 nuclear import in pancreatic β-cells

R. An*†1,2, G. da Silva Xavier*‡2, H.-X. Hao‡2, F. Semplici†, J. Rutter‡ and G.A. Rutter*†

*Henry Wellcome Signalling Laboratories and Department of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K., †Department of Cell Biology, Division of Medicine, Faculty of Medicine, Imperial College, Exhibition Road, London SW7 2AZ, U.K., and ‡Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, U.S.A.

Abstract
The transcription factor PDX-1 (pancreatic duodenal homeobox-1) is required for normal pancreatic development and for the function of insulin-producing islet β-cells in mammals. We have shown previously that glucose regulates insulin gene expression in part through the activation and translocation of PDX-1 from the nuclear periphery to the nucleoplasm. We have also found that PASK [PAS (Per-Arnt-Sim) kinase], a member of the nutrient-regulated family of protein kinases, is activated in response to glucose challenge in β-cells and is involved in the regulation of expression of PDX-1. Purified PASK efficiently phosphorylated recombinant PDX-1 in vitro on a single site (Thr-152). To determine the impact of phosphorylation at this site, we generated wild-type and mutant (T152A, T152D and T152E) forms of PDX-1 and examined the distribution of each of these in clonal MIN6 β-cells by immunocytochemical analysis. Unexpectedly, only the T152D mutation significantly affected subcellular distribution, increasing the ratio of nuclear/cytosolic labelling at low and high glucose concentrations, suggesting that phosphorylation at Thr-152 inhibits nuclear uptake in response to glucose. Based on these results, experiments to examine the contribution of Thr-152 to the overall phosphorylation of PDX-1 in intact cells will be undertaken.

PDX-1 (pancreatic duodenal homeobox-1), also called IPF-1 (insulin promoter factor-1), is an important transcription factor expressed in β-cells in the islet of Langerhans [1,2]. Thus PDX-1 plays a pivotal part in both embryonic pancreas development and in regulating pancreatic islet β-cell-specific gene expression in adults [3].

Homzygous disruption of the Pdx-1 gene results in embryonic pancreas agenesis in mice [4,5], whereas mutations in the orthologous IPF-1 lead to the same phenotype in humans [6]. In mice, heterozygous disruption of the Pdx-1 gene led to hyperglycaemia as a result of inadequate glucose-stimulated insulin production [7]. An inactivating mutation in the Pdx-1 gene is associated with development of MODY 4 (maturity-onset diabetes of the young 4) [6], an inherited form of diabetes that results from impaired β-cell function characterized by disturbed insulin secretion. These results strongly indicate an essential role for PDX-1 in pancreas development and β-cell function.

The involvement of PDX-1 in the transcription of many genes crucial for glucose sensing and insulin gene expression indicates its irreplaceable role in mature β-cells [3]. PDX-1 binds to the promoter elements and activates transcription of many β-cell-specific genes, including those encoding the islet/liver glucose transporter gene, GLUT2 [8], as well as possibly glucokinase [9] and islet amyloid polypeptide [8].

Figure 1 | PASK efficiently phosphorylates PDX-1 in vitro
Purified human PASK (hPASK), purified mouse PDX-1 or the combination was incubated with [γ-32P]ATP for 1 h at 25°C. Protein was then separated by SDS/PAGE and the gel was visualized by Coomassie staining (left panel) or by autoradiography (right panel). Note the hPASK autophosphorylation, and the aberrant migration of PDX-1 (calculated molecular mass, 32 kDa); PDX-1* is a C-terminal fragment of PDX-1. Molecular-mass sizes are given in kDa.
Figure 2 | Subcellular distribution of both wild-type and mutant forms of PDX-1 by immunocytochemistry

Wild-type (a–b), alanine mutant (c–d) and aspartic acid mutant (e–f) forms of PDX-1 were induced in MIN6 cells. Cells were cultured at 3 mM glucose for 16 h and then treated with 3 mM (a, c, e) or 30 mM (b, d, f) glucose for 6 h; Myc-tagged PDX-1 was detected using anti-Myc antibody (Roche) and Alexa Fluor® 568 (Molecular Probes); nuclear staining was achieved using DAPI (4′,6-diamidino-2-phenylindole). The nuclear distribution of the aspartic acid mutant form of PDX-1 appears to be a more cytosolic distribution compared with wild-type and alanine mutant forms of PDX-1.

Compared with the well-studied role for PDX1 in pancreas development and β-cell function, less is known about its regulation, particularly at the post-translational level [3]. For many other transcription factors, including the steroid receptor superfamily [9] and cytokine-activated STAT (signal transducer and activator of transcription) [10], a shift from the cytosol to the nucleoplasm is a major means of activation. By using immunocytochemistry and laser-scanning confocal microscopy, previous work in our laboratory has investigated the mechanisms by which PDX-1 may be activated by glucose. PDX-1 is associated with the nuclear periphery and the nuclear membrane region in cells incubated at low glucose concentrations [11,12]. Elevated glucose concentrations stimulated the transcriptional activity of a preproinsulin promoter reporter construct monitored in a single living MIN6 β-cell and caused a concomitant translocation of PDX-1 from the nuclear periphery into the nucleoplasm. We have therefore proposed that this shift may contribute to the transactivational capacity of PDX-1 in native β-cells exposed to high extracellular glucose concentrations [11].

PAS (Per-Arnt-Sim) domains regulate the function of many intracellular signalling pathways in response to both extrinsic and intrinsic stimuli [13]. PAS domain-regulated histidine kinases are very common in prokaryotes and control a wide range of fundamental physiological processes, e.g. Rhizobia nitrogen fixation, via the oxygen-sensing protein.
FixL [14]. It has been shown that the mammalian protein kinase PASK (PAS kinase) [14] activity is stimulated in pancreatic islet β-cells by elevated glucose concentrations [15]. Importantly, by both transcriptional and post-transcriptional mechanisms, PASK activities were necessary for mediating the direct (intracellular) effect of glucose stimulation on transcription of the preproinsulin and PDX-1 genes [15].

Recombinant PDX-1 was efficiently phosphorylated by purified PASK kinase in vitro on a single site, Thr-152 (Figure 1). Prompted by the results of this in vitro experiment, wild-type and mutant (T152A, T152D and T152E) forms of PDX-1 were generated in adenoviral vectors. In order to study the regulation by PASK on the translocation of PDX-1, the T152D mutant form of PDX-1 was induced in MIN6 cells to mimic PDX-1 phosphorylation by PASK. Immunocytochemical analysis to examine the intracellular distribution of both wild-type and mutant forms of PDX-1 showed that wild-type and alanine mutant PDX-1s were more nuclear at elevated glucose concentration. In contrast, the T152D and T152E mutants displayed a more cytosolic distribution at both high and low glucose concentrations than wild-type or T152A mutant PDX-1 (Figure 2).

In the light of the above findings, adenoviruses encoding wild-type or mutant forms (as above) of Pdx-1 gene were generated for PDX-1 overexpression in a mouse pancreas-derived β-cell line, MIN6 cells, followed by 32P metabolic labelling experiments to examine the contribution of Thr-152 to the overall phosphorylation of PDX-1 in intact cells. Both wild-type and T152A mutant forms of PDX-1 were apparently phosphorylated in living β-cells. Importantly, incorporation of 32P into the Thr-152-mutated forms of PDX-1 implied that phosphorylation at other sites predominates the overall phosphorylation of PDX-1 in living β-cells.

Taken together, the present results suggest that the hypothesis that the PDX-1 phosphorylation by PASK causes translocation from the nuclear periphery to nucleoplasm would appear to be untrue. Rather, phosphorylation of PDX-1 by PASK seems to drive PDX-1 out of the nucleus.

Intriguingly, this may contribute to the effects of chronic hyperglycaemia to inhibit insulin secretion in the long term in diabetic patients. For the short-term stimulation of insulin secretion, according to the PDX-1 32P metabolic labelling phosphorylation experiment results, we assume that there must be other sites on PDX-1 that can be phosphorylated by other kinases to realize the shift of PDX-1 from the nuclear periphery to the nucleus when cells were exposed to increased glucose concentration. Results from other laboratories also suggest that phosphorylation sites Ser-61 and Ser-66 of PDX-1 by glycogen synthase kinase 3 may be involved [3].

References

Received 11 July 2006