Biochemical Society Award Lecture

Tuberculosis: a balanced diet of lipids and carbohydrates

Heatley Medal Lecture

What we have learned from ribosome structures
V. Ramakrishnan 567–574

Novartis Award Lecture

The methyl-CpG-binding protein MeCP2 and neurological disease
Adrian Bird 575–583

Biochemical Society Linked Focused Meetings

Transcription
University of Manchester, U.K., 26–28 March 2008
Edited by Stefan Roberts (Manchester, U.K.) and Robert White (Beatson Institute, Glasgow, U.K.).

Transcription factories
David R.F. Carter, Christopher Eskiw and Peter R. Cook 585–589

Expression of human snRNA genes from beginning to end
Sylvain Egloff, Dawn O’Reilly and Shona Murphy 590–594

Interaction of the TFIIB zinc ribbon with RNA polymerase II
Laura M. Elsby and Stefan G.E. Roberts 595–598

Chromatin switching and transcriptional regulation in disease
Lezanne Ooi and Ian C. Wood 599–602
Regulation of the RelA (p65) transactivation domain
John M. O’Shea and Neil D. Perkins 603–608

The DEAD box RNA helicases p68 (Ddx5) and p72 (Ddx17): novel transcriptional co-regulators
Frances V. Fuller-Pace and Simak Ali 609–612

Switching genes on and off in haemopoiesis
David Garrick, Marco De Gobbi, Magnus Lynch and Douglas R. Higgs 613–618

Selected oral communications

Structure and function of ribosomal RNA gene chromatin
Joanna L. Birch and Joost C.B.M. Zomerdijk 619–624

Regulation of transcription by the Epstein–Barr virus nuclear antigen EBNA 2
Richard D. Palermo, Helen M. Webb, Andrea Gunnell and Michelle J. West 625–628

The role of the Wilms’ tumour-suppressor protein WT1 in apoptosis
Jörg Hartkamp and Stefan G.E. Roberts 629–631

Progesterone regulation of RUSH/SMARCA3/HLTF includes DNA looping
Beverly S. Chilton and Aveline Hewetson 632–636

The reversal of epigenetic silencing of the EBV genome is regulated by viral bZIP protein
Questa H. Karlsson, Celine Schelcher, Elizabeth Verrall, Carlo Petosa and Alison J. Sinclair 637–639

Post-Transcriptional Control
University of Manchester, U.K., 26–28 March 2008

Edited by Nicola Gray (MRC Human Genetics Unit, Edinburgh, U.K.), Simon Morley (University of Sussex, U.K.) and Graham Pavitt (Manchester, U.K.).

Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein
Kirsty Sawicka, Martin Bushell, Keith A. Spriggs and Anne E. Willis 641–647

Subcellular localization of mRNA and factors involved in translation initiation
Nathaniel P. Hoyle and Mark P. Ashe 648–652

Mechanism of ribosomal subunit joining during eukaryotic translation initiation
Michael G. Acker and Jon R. Lorsch 653–657

Clues to the mechanism of action of eIF2B, the guanine-nucleotide-exchange factor for translation initiation
Sarah S. Mohammad-Qureshi, Martin D. Jennings and Graham D. Pavitt 658–664

Sequential waves of polyadenylation and deadenylation define a translation circuit that drives meiotic progression
Eulália Bello, Maria Piqué and Raúl Méndez 665–670

Translational control in early development: CPEB, P-bodies and germinal granules
Nancy Standart and Nicola Minshall 671–676
Ribosomal acrobatics in post-transcriptional control
Robert J.C. Gilbert, Ian Brierley and John E.G. McCarthy 677–683

RNA pseudoknots and the regulation of protein synthesis
Ian Brierley, Robert J.C. Gilbert and Simon Pennell 684–689

Selected oral communications

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lentiviral RNAs can use different mechanisms for translation initiation</td>
<td>Emiliano P. Ricci, Ricardo Soto Rifo, Cécile H. Herbreteau, Didier Decimo and Théophile Ohlmann</td>
<td>690–693</td>
</tr>
<tr>
<td>Contribution of internal initiation to translation of cellular mRNAs containing IRESs</td>
<td>Eugenia S. Mardanova, Ludmila A. Zamchuk and Nikolai V. Ravin</td>
<td>694–697</td>
</tr>
<tr>
<td>UPF1 P-body localization</td>
<td>Saverio Brogna, Preethi Ramanathan and Jikai Wen</td>
<td>698–700</td>
</tr>
<tr>
<td>Regulation of translation initiation by herpesviruses</td>
<td>Richard W.P. Smith, Sheila V. Graham and Nicola K. Gray</td>
<td>701–707</td>
</tr>
<tr>
<td>Post-transcriptional regulation of gene expression by alternative 5′-untranslated regions in carcinogenesis</td>
<td>Laura Smith</td>
<td>708–711</td>
</tr>
<tr>
<td>Dissection of a co-translational nascent chain separation event</td>
<td>Victoria A. Doronina, Pablo de Felipe, Cheng Wu, Pamila Sharma, Matthew S. Sachs, Martin D. Ryan and Jeremy D. Brown</td>
<td>712–716</td>
</tr>
<tr>
<td>Translational termination–re-initiation in viral systems</td>
<td>Michael L. Powell, T. David K. Brown and Ian Brierley</td>
<td>717–722</td>
</tr>
</tbody>
</table>

New Methods for the Study of Protein–Nucleic Acid Interactions

University of Manchester, U.K., 26–28 March 2008

Edited by Steve Busby (Birmingham, U.K.), W. Marshall Stark (Glasgow, U.K.) and Malcolm White (St Andrews, U.K.).

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>The emerging role of MS in structure elucidation of protein–nucleic acid complexes</td>
<td>Yuliya Gordiyenko and Carol V. Robinson</td>
<td>723–731</td>
</tr>
<tr>
<td>Single-molecule micromanipulation studies of DNA and architectural proteins</td>
<td>Remus Th. Dame</td>
<td>732–737</td>
</tr>
<tr>
<td>Time-resolved footprinting for the study of the structural dynamics of DNA–protein interactions</td>
<td>Bianca Sclavi</td>
<td>745–748</td>
</tr>
<tr>
<td>Visualizing genetic loci and molecular machines in living bacteria</td>
<td>Xindan Wang, Rodrigo Reyes-Lamothe and David J. Sherratt</td>
<td>749–753</td>
</tr>
</tbody>
</table>
Methods for studying global patterns of DNA binding by bacterial transcription factors and RNA polymerase
David C. Grainger and Stephen J.W. Busby 754–757

Computational approaches to study transcriptional regulation
M. Madan Babu 758–765

The shock of the old: hydrodynamics for the masses
David J. Scott 766–770

Higher-throughput approaches to crystallization and crystal structure determination
Mark J. Fogg and Anthony J. Wilkinson 771–775

Visualizing the organization and reorganization of transcription complexes for gene expression
Patricia C. Burrows, Sivaramesh Wigneshweraraj, Dan Bose, Nicolas Joly, Jörg Schumacher, Mathieu Rappas, Tilmann Pape, Peter G. Stockley, Xiaodong Zhang and Martin Buck 776–779