Biochemical Society Focused Meetings

Cellular Cytoskeletal Motor Proteins

Wellcome Trust Genome Campus, Hinxton, Cambridge, U.K., 30 March–1 April 2011

Edited by Folma Buss (Cambridge, U.K.) and John Kendrick-Jones (MRC Laboratory of Molecular Biology, Cambridge, U.K.).

Myosin motor proteins are involved in the final stages of the secretory pathways

Lisa M. Bond, Hemma Brandstaetter, James R. Sellers, John Kendrick-Jones and Folma Buss

Kinesin motors and primary cilia

Kristen J. Verhey, John Dishinger and Hooi Lynn Kee

Bidirectional intracellular transport: utility and mechanism

Amber L. Jolly and Vladimir I. Gelfand

Distinct and redundant roles of the non-muscle myosin II isoforms and functional domains

Aibing Wang, Xuefei Ma, Mary Anne Conti and Robert S. Adelstein

Regulation of myosin 5a and myosin 7a

Verl B. Siththanandan and James R. Sellers

Coiled coils and SAH domains in cytoskeletal molecular motors

Michelle Peckham

Mitotic motors and chromosome segregation: the mechanism of anaphase B

Ingrid Brust-Mascher and Jonathan M. Scholey

Chromokinesins: localization-dependent functions and regulation during cell division

David Vanneste, Vanessa Ferreira and Isabelle Vernos

Messengers, motors and mysteries: sorting of eukaryotic mRNAs by cytoskeletal transport

Simon L. Bullock

Cellular functions of class IX myosins in epithelia and immune cells

Martin Bähler, Kerstin Elfrink, Peter J. Hanley, Sabine Thelen and Yan Xu

Cytoplasmic dynein

Victoria J. Allan

The role of motor proteins in endosomal sorting

Sylvie D. Hunt and David J. Stephens
Selected oral communications
Function and regulation of *Saccharomyces cerevisiae* myosins-I in endocytic budding
Jonathan Giblin, Isabel María Fernández-Golbano, Fatima-Zahra Idrissi and María Isabel Geli
1185–1190

Melanosomes on the move: a model to understand organelle dynamics
Alistair N. Hume and Miguel C. Seabra
1191–1196

Microtubule-based motor-mediated mRNA localization in *Drosophila* oocytes and embryos
Imre Gaspar
1197–1201

Rab GTPases and microtubule motors
Conor P. Horgan and Mary W. McCaffrey
1202–1206

The many different cellular functions of MYO7A in the retina
David S. Williams and Vanda S. Lopes
1207–1210

Co-operative transport by molecular motors
Florian Berger, Corina Keller, Melanie J.I. Müller, Stefan Klumpp and Reinhard Lipowsky
1211–1215

Analysis of Free Radicals, Radical Modifications and Redox Signalling
Aston University, Birmingham, U.K., 18–19 April 2011

Edited by Helen Griffiths (Aston University, U.K.), Corinne Spickett (Aston University, U.K.) and Paul Winyard (Exeter, U.K.).

Analysis of radicals and radical reaction products in cell signalling and biomolecular damage: the long hard road to gold-standard measures
Paul G. Winyard, Corinne M. Spickett and Helen R. Griffiths
1217–1220

Oxidative chemistry of fluorescent dyes: implications in the detection of reactive oxygen and nitrogen species
Balaraman Kalyanaraman
1221–1225

Measurement and meaning of markers of reactive species of oxygen, nitrogen and sulfur in healthy human subjects and patients with inflammatory joint disease
Paul G. Winyard, Brent Ryan, Paul Eggleton, Ahuva Nissim, Emma Taylor, Maria Letizia Lo Faro, Torsten Burkholz, Katalin E. Szabó-Taylor, Bridget Fox, Nick Viner, Richard C. Haigh, Nigel Benjamin, Andrew M. Jones and Matthew Whiteman
1226–1232

Analysis of oxidized and chlorinated lipids by mass spectrometry and relevance to signalling
Corinne M. Spickett and Norsyahida Mohd Fauzi
1233–1239

Lipidomics of polyunsaturated-fatty-acid-derived oxygenated metabolites
Karen A. Massey and Anna Nicolaou
1240–1246

Redox signalling via the cellular thiolstat
Claus Jacob
1247–1253

Cysteine residues as catalysts for covalent peptide and protein modification: a role for thiol radicals?
Christian Schöneich
1254–1259
Contemporary techniques for detecting and identifying proteins susceptible to reversible thiol oxidation
Joseph R. Burgoyne and Philip Eaton 1260–1267

Thiol regulation of pro-inflammatory cytokines and innate immunity: protein S-thiolation as a novel molecular mechanism
Lucia Coppo and Pietro Ghezzi 1268–1272

Free radicals and redox signalling in T-cells during chronic inflammation and ageing
Helen R. Griffiths, Christopher R. Dunston, Stuart J. Bennett, Melissa M. Grant, Darren C. Phillips and George D. Kitas 1273–1278

Mechanisms and consequences of oxidative damage to extracellular matrix
Eleanor C. Kennett, Christine Y. Chuang, Georg Degendorfer, John M. Whitelock and Michael J. Davies 1279–1287

Selected oral communications

Electrochemical and optical sensing of reactive oxygen species: pathway to an integrated intracellular and extracellular measurement platform
Philip Manning and Calum J. McNeil 1288–1292

Spectroscopic analysis of protein Fe–NO complexes

Measurement of exercise-induced oxidative stress in lymphocytes
James E. Turner, Jos A. Bosch and Sarah Aldred 1299–1304

Mitochondrial (‘mild’) uncoupling and ROS production: physiologically relevant or not?
Irina G. Shabalina and Jan Nedergaard 1305–1309

Joint Sino-U.K. Protein Symposium: a Meeting to Celebrate the Centenary of the Biochemical Society
Shanghai University, Shanghai, China, 5–7 May 2011

Edited by Zengyi Chang (Peking University, China) and Neil Isaacs (Glasgow, U.K.).

The 2011 Joint Sino-U.K. Protein Symposium
Zengyi Chang and Neil Isaacs 1311–1312

Biochemical contacts and collaborations between China and the U.K. since 1911
Guy G. Dodson 1313–1322

Insulin research in China and the U.K.
Youshang Zhang 1323–1326

Probing the druggability of protein–protein interactions: targeting the Notch1 receptor ankyrin domain using a fragment-based approach
Noha Abdel-Rahman, Alfonso Martinez-Arias and Tom L. Blundell 1327–1333

Glycosylation of mouse and human immune cells: insights emerging from N-glycomics analyses
Aristotelis Antonopoulos, Simon J. North, Stuart M. Haslam and Anne Dell 1334–1340
Combining modelling and mutagenesis studies of synaptic vesicle protein 2A to identify a series of residues involved in racetam binding
Jiye Shi, Dina Anderson, Berkley A. Lynch, Jean-Gabriel Castaigne, Patrik Foerch and Florence Lebon 1341–1347

Application of proteomics in the mechanistic study of traditional Chinese medicine
Xuan Liu and De-An Guo 1348–1352

Towards a structural understanding of drug and peptide transport within the proton-dependent oligopeptide transporter (POT) family
Simon Newstead 1353–1358

The yeast prion protein Ure2: insights into the mechanism of amyloid formation
Li-jun Chen, Elizabeth B. Sawyer and Sarah Perrett 1359–1364

Collation and data-mining of literature bioactivity data for drug discovery
Louisa J. Bellis, Ruth Akhtar, Bissan Al-Lazikani, Francis Atkinson, A. Patricia Bento, Jon Chambers, Mark Davies, Anna Gaulton, Anne Hersey, Kazuyoshi Ikeda, Felix A. Krüger, Yvonne Light, Shaun McGlinchey, Rita Santos, Benjamin Stauch and John P. Overington 1365–1370

Recent development of 3C and 3CL protease inhibitors for anti-coronavirus and anti-picornavirus drug discovery
R. Ramajayam, Kian-Pin Tan and Po-Huang Liang 1371–1375

Arginine deiminase modulates endothelial tip cells via excessive synthesis of reactive oxygen species
Wei Zhuo, Xiaomin Song, Hao Zhou and Yongzhang Luo 1376–1381

Towards structure-based protein drug design
Changsheng Zhang and Luhua Lai 1382–1386

Selected oral communication
Non-homologous end-joining partners in a helical dance: structural studies of XLF–XRCC4 interactions
Qian Wu, Takashi Ochi, Dijana Matak-Vinkovic, Carol V. Robinson, Dimitri Y. Chirgadze and Tom L. Blundell 1387–1392

Independent Meetings

Structure and Function of Whey Acidic Protein (WAP) Four-Disulfide Core (WFDC) Proteins
Robinson College, Cambridge, U.K., 12–14 April 2011

Edited by Colin Bingle (Sheffield, U.K.), Judith Hall (Newcastle, U.K.), Cliff Taggart (Queen’s University Belfast, U.K.) and Annapurna Vyakarnam (King’s College London, U.K.).

Towards defining the complement of mammalian WFDC-domain-containing proteins
Colin D. Bingle 1393–1397

Genes encoding WFDC- and Kunitz-type protease inhibitor domains: are they related?
Åke Lundwall and Adam Clauss 1398–1402
Phylogeny of whey acidic protein (WAP) four-disulfide core proteins and their role in lower vertebrates and invertebrates
Valerie J. Smith 1403–1408

WAP domain proteins as modulators of mucosal immunity

Biological functions of the WAP domain-containing multidomain proteins WFIKKN1 and WFIKKN2
Katalin Kondás, György Szláma, Alinda Nagy, Mária Trexler and László Patthy 1416–1420

SLPI and inflammatory lung disease in females
Paul J. McKiernan, Noel G. McElvaney and Catherine M. Greene 1421–1426

War and peace between WAP and HIV: role of SLPI, trappin-2, elafin and ps20 in susceptibility to HIV infection
Anna G. Drannik, Bethany M. Henrick and Kenneth L. Rosenthal 1427–1432

Immunotherapy of prostate cancer: identification of new treatments and targets for therapy, and role of WAP domain-containing proteins
Christine Galustian, Annapurva Vyakarnam, Oussama Elhage, Oliver Hickman, Prokar Dasgupta and Richard A. Smith 1433–1436

SLPI and elafin: multifunctional antiproteases of the WFDC family
Aaron Scott, Sinéad Weldon and Clifford C. Taggart 1437–1440

SLPI and trappin-2 as therapeutic agents to target airway serine proteases in inflammatory lung diseases: current and future directions
Marie-Louise Zani, Annabelle Tanga, Ahlame Saidi, Hélène Serrano, Sandrine Dallet-Choisy, Kévin Baranger and Thierry Moreau 1441–1446

Functional studies of eppin

Therapeutic potential of human elafin
Lee Shaw and Oliver Wiedow 1450–1454

The WFDC1 gene: role in wound response and tissue homeostasis
Steven J. Ressler and David R. Rowley 1455–1459

8th International Meeting on Yeast Apoptosis
Keynes College, University of Kent, Canterbury, U.K., 2–6 May 2011

Edited by Paula Ludovico (University of Minho, Braga, Portugal).

mRNA stability and control of cell proliferation
Cristina Mazzoni and Claudio Falcone 1461–1465

Yeast chronological lifespan and proteotoxic stress: is autophagy good or bad?
Belém Sampaio-Marques, Carolina Felgueiras, Alexandra Silva, Fernando Rodrigues and Paula Ludovico 1466–1470
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging and longevity of yeast colony populations: metabolic adaptation and differentiation</td>
<td>Libuše Váchová and Zdena Palková</td>
<td>1471–1475</td>
</tr>
<tr>
<td>Aggresome formation and segregation of inclusions influence toxicity of α-synuclein and synphilin-1 in yeast</td>
<td>Erwin Swinnen, Sabrina Büttner, Tiago F. Outeiro, Marie-Christine Galas, Frank Madeo, Joris Winderickx and Vanessa Franssens</td>
<td>1476–1481</td>
</tr>
<tr>
<td>Using yeast models to probe the molecular basis of amyotrophic lateral sclerosis</td>
<td>Emma L. Bastow, Campbell W. Gourlay and Mick F. Tuite</td>
<td>1482–1487</td>
</tr>
<tr>
<td>Mitochondrial quality control in aging and lifespan control of the fungal aging model Podospora anserina</td>
<td>Heinz D. Osiewacz</td>
<td>1488–1492</td>
</tr>
<tr>
<td>Apoptosis-like programmed cell death in the grey mould fungus Botrytis cinerea: genes and their role in pathogenicity</td>
<td>Neta Shlezinger, Adi Doron and Amir Sharon</td>
<td>1493–1498</td>
</tr>
<tr>
<td>Nma111p, the pro-apoptotic HtrA-like nuclear serine protease in Saccharomyces cerevisiae: a short survey</td>
<td>Birthe Fahrenkrog</td>
<td>1499–1501</td>
</tr>
<tr>
<td>Proteases and caspase-like activity in the yeast Saccharomyces cerevisiae</td>
<td>Derek Wilkinson and Mark Ramsdale</td>
<td>1502–1508</td>
</tr>
<tr>
<td>Mitochondrial quality control by the ubiquitin–proteasome system</td>
<td>Eric B. Taylor and Jared Rutter</td>
<td>1509–1513</td>
</tr>
<tr>
<td>Mitophagy, mitochondrial dynamics and the general stress response in yeast</td>
<td>Matthias Müller and Andreas S. Reichert</td>
<td>1514–1519</td>
</tr>
<tr>
<td>Mitochondrial dynamics in yeast cell death and aging</td>
<td>Ralf J. Braun and Benedikt Westermann</td>
<td>1520–1526</td>
</tr>
<tr>
<td>Apoptosis-inducing antifungal peptides and proteins</td>
<td>Katrijn De Brucker, Bruno P.A. Cammue and Karin Thevissen</td>
<td>1527–1532</td>
</tr>
<tr>
<td>Achievements and perspectives in yeast acetic acid-induced programmed cell death pathways</td>
<td>Nicoletta Guaragnella, Lucia Antonacci, Salvatore Passarella, Ersilia Marra and Sergio Giannattasio</td>
<td>1538–1543</td>
</tr>
<tr>
<td>Farnesol-induced cell death in the filamentous fungus Aspergillus nidulans</td>
<td>Taisa Magnani Dinamarco, Maria Helena S. Goldman and Gustavo Henrique Goldman</td>
<td>1544–1548</td>
</tr>
</tbody>
</table>

Correction | 1549 |