Bacterial nitrate assimilation: gene distribution and regulation

Victor M. Luque-Almagro*, Andrew J. Gates†, Conrado Moreno-Vivián*, Stuart J. Ferguson‡, David J. Richardson† and M. Dolores Roldán*1

To whom correspondence should be addressed (email bb2rorum@uco.es).

Abstract

In the context of the global nitrogen cycle, the importance of inorganic nitrate for the nutrition and growth of marine and freshwater autotrophic phytoplankton has long been recognized. In contrast, the utilization of nitrate by heterotrophic bacteria has historically received less attention because the primary role of these organisms has classically been considered to be the decomposition and mineralization of dissolved and particulate organic nitrogen. In the pre-genome sequence era, it was known that some, but not all, heterotrophic bacteria were capable of growth on nitrate as a sole nitrogen source. However, examination of currently available prokaryotic genome sequences suggests that assimilatory nitrate reductase (Nas) systems are widespread phylogenetically in bacterial and archaeal heterotrophs. Until now, regulation of nitrate assimilation has been mainly studied in cyanobacteria. In contrast, in heterotrophic bacterial strains, the study of nitrate assimilation regulation has been limited to Rhodobacter capsulatus, Klebsiella oxytoca, Azotobacter vinelandii and Bacillus subtilis. In Gram-negative bacteria, the nas genes are subjected to dual control: ammonia repression by the general nitrogen regulatory (Ntr) system and specific nitrate or nitrite induction. The Ntr system is widely distributed in bacteria, whereas the nitrate/nitrite-specific control is variable depending on the organism.

Bacterial distribution of nitrate assimilatory gene clusters

The nitrate-assimilation process begins with the transport of nitrate into the cell. Nitrate is further reduced to nitrite in a two-electron reaction by a cytoplasmic molybdenum-containing nitrate reductase followed by a six-electron nitrite reduction to produce ammonia by a sirohaem-nitrite reductase [1,2]. Genetic characterization of assimilatory nitrate-reducing systems has been focused mainly on cyanobacteria, but also on heterotrophic bacteria such as Rhodobacter capsulatus [3,4], Klebsiella oxytoca [5], Azotobacter vinelandii [6] and the Gram-positive Bacillus subtilis [7]. Studies of nitrate assimilation in heterotrophic bacterial species are scarce; however, examination of available genomes suggests that assimilatory nitrate reductases (Nas) are phylogenetically widespread in bacterial and archaeal heterotrophs [2]. In addition, a nitrate assimilation system has been recently characterized in Paracoccus denitrificans [8]. In this organism, a genetic and biochemical analysis has revealed novel insights into bacterial nitrate assimilation. This study has identified a key role for a Rieske-type [2Fe–2S] protein, NasG, encoded by the nasG gene (also called nirD, nasD or nasE in other organisms), which is conserved in several bacterial nas gene clusters (Figure 1). NasG is essential for coupling of NADH oxidation to both nitrate and nitrite reduction. A three-component Rieske Fe–S protein–nitrate–nitrite reductase system has been proposed, where the Rieske Fe–S protein mediates electron transfer from a single NADH-oxidizing site within the nitrate reductase to the sites of nitrate and nitrite reduction present in the nitrite reductase (NasB) and nitrate reductase (NasC) components respectively, since NasC lacks a nicotinamide–nucleotide-binding domain [8]. In the Gram-positive B. subtilis, there is an accessory protein to the nitrate reductase, NasB, which contains FAD. Recently, the nitrate assimilation nas gene cluster of the Gram-positive actinomycete Amycolatopsis mediterranei strain U32 has been described [9]. Nitrate assimilation genes have been also described and characterized in the haloarchaeon Haloferax mediterranei [10].

The nas gene cluster of P. denitrificans also contains two genes, nasA and nasH, that code for a nitrate transporter of the MFS (major facilitator superfamily) and for a nitrite transporter that belongs to the formate–nitrite transporter superfamily respectively (Figure 1). ABC (ATP-binding cassette)-type nitrate/nitrite transporters are also encoded in bacterial nas clusters (nasFED in Klebsiella pneumoniae and R. capsulatus), mainly in cyanobacteria (nrtABCD in Synechococcus elongatus). Another gene present in the nas region of some bacteria is cysG (Figure 1). CysG is an uroporphyrin-III C-methyltransferase involved in the synthesis of sirohaem, the nitrite reductase cofactor. In

Key words: nitrate assimilation, nitrate reductase, nitrate transport, nitrite reductase, two-component regulatory system.

Abbreviations used: ABC, ATP-binding cassette.
Nitrate assimilation is regulated by the pathway-specific control

Except in Gram-positive bacteria, nitrate assimilation is regulated by a pathway-specific control through regulatory proteins encoded by genes usually located within the nas region (Figure 1). These regulatory proteins belong to three different types: the NtcB regulator of cyanobacteria, and the two-component regulatory system NasST or the NasR regulatory protein of heterotrophic bacteria. NtcB, a LysR family protein, is a transcription activator that enhances transcription in response to nitrite [11]. The molecular mechanism of NasST and NasR is based on nitrate/nitrite sensing and transcription anti-termination. These two functions are performed by either the single-component NasR or the two-component NasST system, where NasS is a nitrate/nitrite sensor and NasT is predicted to be a transcription anti-terminator. NasR and NasT-type proteins are characterized by an RNA-binding domain (ANTAR) involved in transcriptional anti-termination [12]. Sequence analysis suggests that NasR and NasS have two different domains to sense nitrate/nitrite. NasR contains a nitrate- and nitrite-sensing (NIT) domain, also detected in various receptor components of signal transduction pathways in different bacterial lineages [13]. NasS exhibits high sequence similarity to NrtA, the periplasmic component of an ABC-type uptake system for nitrate and nitrite in cyanobacteria [14] (Figure 1), suggesting that NasS could bind nitrate or nitrite by a similar molecular mechanism as NrtA. In addition, the periplasmic leader sequence conserved within cyanobacterial transport systems is absent from the NasS
amino acid sequence. Consequently, NasS is located in the cytoplasm, making its involvement in nitrate uptake unlikely. Instead, NasS may bind nitrate and/or nitrite as part of a cytoplasmic sensing system for transcriptional regulation.

The regulation of nitrate assimilation by NasR has been extensively studied in K. oxytoca. In this bacterium, a hairpin structure has been identified in mRNA upstream of the K. oxytoca nas operon that causes early termination of transcription [15]. NasR, presumably as a binary complex with nitrate or nitrite, binds to the mRNA transcript, preventing hairpin formation and allowing complete expression of the nas genes. The NasST regulatory system has been studied in A. vinelandii. In this nitrogen-fixing bacterium, a mutational analysis revealed that NasT is required for the expression of the nitrite–nitrate reductase genes (nasAB), whereas NasS plays a negative regulatory role in the synthesis of the nitrate and nitrite reductase [6]. A positive transcriptional regulator was also the function proposed for NasT in Pseudomonas putida JLR11A, where a nasT mutant was impaired in the use of nitrate and nitrite [16].

Both nasR and nasST genes are clustered together with other genes involved in nitrate assimilation, but showing different gene arrangement within the nas clusters. In some cases, these regulatory genes cluster together genes that code for nitrate/nitrite transporters. In other organisms, the nasST genes are located in different loci from the nas gene cluster, suggesting that the NasST system could act at distance or even might be involved in the regulation of other metabolic pathways. The analysis of the genome sequences currently available reveals that the NasST system is more widely distributed than NasR. Despite nasST having been characterized in A. vinelandii, a gammaproteobacterium, genes coding for this two-component regulatory system have been found mainly in Alphaproteobacteria (Rhizobiales and Rhodobacteriales) and Betaproteobacteria (Burkholderiales). In contrast, nasR is mainly distributed among Gammaproteobacteria (Enterobacteriaceae and Alteromonadales).

In addition to the NtcB, NasR and NasST regulatory systems, some nas clusters contain additional putative regulatory genes (Figure 1). For instance, a gene coding for a kinase/phosphatase is present in the nas cluster of A. vinelandii, Methylococcus capsulatus and others, although there is no experimental evidence implicating this gene in regulation of nitrate assimilation. Another example is the ntrR gene, which has been identified in the Rhodobacter capsulatus nas gene region (Figure 1). The ntrR gene product is homologous with a novel nitrite-negative transcription repressor of the Rrf2 family that controls expression of the copper nitrite reductase NirK in Nitrosomonas europaea. Therefore the NsrR protein could repress expression of nitrate assimilation genes in the absence of nitrate or nitrite [4]. Another putative regulatory protein for nitrate assimilation is Hfq, a RNA-binding protein involved in post-transcriptional regulation of gene expression in bacteria. It has been recently described that Hfq is required for optimal nitrate assimilation in the cyanobacterium Anabaena sp.

General nitrogen control of the nitrate-assimilation process

In bacteria, carbon, nitrogen and energy status of the cells is sensed and co-ordinated by the PII signal transduction proteins (GlnB and GlnK) [18]. The PII proteins control a wide range of processes related to nitrogen metabolism, such as nitrate assimilation through the global nitrogen control factor NtcA in cyanobacteria [19] or the NtrBC system in heterotrophic bacteria [16,20–25]. Gram-positive bacteria possess a GlnK-like PII protein, which controls the activity of the nitrogen-stress transcription factor TnrA in conjunction with the glutamine synthetase [26].

NtcA mediates ammonia repression of nitrate assimilation in cyanobacteria. The activity of NtcA is indirectly regulated by 2-oxoglutarate through a small PII-binding protein, PipX. The transcriptional activator NtcA is found in all cyanobacterial strains characterized to date [11].

The two-component system NtrBC has been characterized extensively in enteric bacteria [27]. NtrB is a sensor kinase that autophosphorylates on a histidine residue under low nitrogen conditions and also transfers a phosphoryl group to the NtrC response regulator protein on a specific aspartate residue [28,29]. Phosphorylated NtrC acts as a transcriptional activator by oligomerization on the DNA template and has an ATPase activity that is essential for activation of transcription [30,31]. The NtrC members are usually σ54-dependent and they are involved in the transcription of genes related to nitrogen metabolism such as glnA, which codes for the glutamine synthetase. However, in R. capsulatus, a regulatory two-component NtrBC system has been described in which the NtrC component is not dependent on the σ54 factor. The NtrBC system has been described to be the mechanism by which the ammonium represses nitrate assimilation in K. oxytoca [20], A. vinelandii [21], Azorhizobium caulinodans [22], Azospirillum brasilense [23], Rhizobium meliloti [24], Pseudomonas aeruginosa [25] and Pseudomonas putida [16]. Downstream of the ntrBC genes, some organisms contain the ntrYX genes that code for an additional two-regulatory system, NtrYX (Figure 2), which also shows similarity to a sensor/kinase and to regulatory proteins respectively. In A. caulinodans, a mutant in the ntrX gene was found to be defective in using nitrate as the sole nitrogen source, with reduced nifA expression under nitrogen-fixation conditions and a disturbed symbiotic phenotype [22]. In addition, expression of the ntrYX operon was derepressed in an ntrC mutant grown with nitrate, suggesting an interaction between the ntrXY/ntrBC systems [22]. In A. brasilense, the NtrX system is involved in nitrate utilization, and a possible crosstalk between the NtrYX and NtrBC sensor/regulator pairs is also suggested [23,32]. The NtrBC system in A. brasilense...
is involved in the regulation of nitrate assimilation, the switch-off of nitrogenase by ammonium and ammonium transport [23].

The regulatory protein TnrA of Gram-positive bacteria shows sequence similarity to GlnR, the repressor of the B. subtilis glutamine synthetase operon. A tnrA mutant of B. subtilis was impaired in the use of nitrate as nitrogen source [33]. TnrA activity has been described to be regulated by its interaction with AmtB (ammonia transporter)–GlnK and glutamine synthetase [34].

Integrating the two regulatory levels that control nitrate assimilation in bacteria

To summarize, nitrate assimilation is subjected to regulation that may differ depending on the organism. In general, nitrate assimilation is controlled at the transcriptional level by nitrate and nitrite induction and by ammonium repression. As an exception, in Gram-positive bacteria such as B. subtilis, nitrate assimilation is only regulated by the global nitrogen regulator TnrA, which activates nas genes under nitrogen-starvation conditions [35] (Figure 3).

In cyanobacteria, the transcription factor NtcA represses nitrate assimilation genes when ammonium is present, whereas it activates transcription of these genes at a high carbon/nitrogen ratio or nitrogen depletion that is reflected by high 2-oxoglutarate levels through the sensor PII [36–38] (Figure 3). Nitrate assimilation in α-cyanobacteria is only regulated by NtcA; however, β-cyanobacteria require both NtcA and NtcB for expression of the nas operon [38]. In these organisms, the regulatory proteins NtcA and NtcB act not only as transcription activators, but also as the sensors of 2-oxoglutarate and nitrite respectively.

In heterotrophs, the only organism in which dual regulation of nitrate/nitrite assimilation has been studied in detail is K. oxytoca [20]. In this bacterium, expression of nas genes is activated under low nitrogen conditions through the global nitrogen regulator Ntr and by nitrate/nitrite induction through NasR. The nas region contains two promoters; one is located upstream of the nasR gene and the other upstream of the structural gene operon (nasF). It has been demonstrated that these two promoters are targets for the NtrC protein. Thus, under nitrogen-rich conditions, the nasFECDBA operon is repressed both directly (by decreasing Ntr activation of the nasF promoter) and indirectly (by decreasing synthesis of the NasR regulatory protein). Because the NasR protein can affect a significant level of transcription anti-termination in the nasF operon leader region even in the absence of nitrate or nitrite, it has been proposed that Ntr control of NasR synthesis might provide an additional means of further reducing the basal level of nasF operon expression. In addition, an increase in NasR levels under nitrogen-limiting conditions through the phosphorylated form of NtrC serves to sensitize the response of the organism to even relatively low levels of nitrate.

In common with K. oxytoca, synthesis of assimilatory nitrate and nitrite reductases in A. vinelandii requires the absence of ammonium and the presence of nitrate. In both organisms, equivalent specific regulatory genes (nasR and nasST) are located upstream of the structural nas genes, with an intergenic non-coding region between the regulatory and structural genes. Therefore the dual regulation of nitrate assimilation in A. vinelandii is expected to be similar to that described for K. oxytoca. Thus expression of the nasAB operon under nitrogen-limiting conditions requires the general nitrogen control genes ntrA and ntrC [39].
However, in contrast with nasR, the nasST genes involved in the specific regulation by nitrate/nitrite are not regulated by either the Ntr system or the nitrogen source [6]. Accordingly, the integration of nitrate (via NasST) and ammonium (via Ntr) signals in A. vinelandii, and of course in other organisms possessing these systems, is still unknown.

Funding

M.D.R. and C.M.-V. thank the Ministerio de Ciencia y Tecnología for supporting the work [grant number BTO2008-04542-C02-01] and the Junta de Andalucía [grant number CV1728]. V.M.L.-A. was the recipient of a postdoctoral fellowship from the Ministerio de Ciencia y Tecnología, Spain. This work was supported by the Biotechnology and Biological Sciences Research Council [grant numbers BB0219991 and BB0230191]. D.J.R. is a Royal Society and Wolfson Foundation for Merit Award Fellow.

References


Received 3 August 2011
doi:10.1042/BST20110688