Human plasma concentrations of the unchanged drug and metabolites were determined over the first 24h. Peak debrisoquine concentrations (20–50ng/ml) occurred during the first 2–3h and diminished rapidly. Most of the radioactivity was accounted for as metabolites, their rate of disappearance being slower than the parent drug.

We are grateful to Dr. T. R. Marten for determination of certain of the mass spectra and Dr. J. G. Allen of Roche Products Ltd., Welwyn Garden City, Herts., U.K. for a sample of 4-hydroxydebrisoquine, and to the Joint Standing Research Committee of St. Mary's Hospital and the Wellcome Trust for financial support.

Hofman, E. & Wünsch, A. (1958) Naturwissenschaften 45, 338

A New Method for the Determination of the Major Metabolite of Prostaglandin F_{2α} in Human Urine Based on Stable Isotope Dilution and Gas Chromatography–Mass Spectrometry

ALAN R. BRASH, G. HARRY DRAFFAN, ROY A. CLARE and THOMAS A. BAILLIE

Department of Clinical Pharmacology, Royal Postgraduate Medical School, Ducane Road, London W12 0HS, U.K.

Studies on the biological fate in man of primary prostaglandins of the E and F series have shown that metabolic conversion takes place into a series of side-chain degradation products that are excreted in urine (Samuelsson, 1973). The major metabolite of prostaglandin F_{2α} in the urine is 5α,7α-dihydroxy-11-oxotetranorprostane-1,16-dioic acid (referred to below as 'prostaglandin F metabolite'), quantitative determination of which may be used to study the effect of drugs or different physiological conditions on prostaglandin F_{2α} turnover in vivo (Hamberg, 1974; Samuelsson, 1973). In connection with our investigations into the role of prostaglandin F_{2α} in certain pathological disorders, we have developed a highly specific and sensitive assay for prostaglandin F metabolite, based on stable isotope dilution and combined g.l.c.–mass spectrometry. The internal standard used in this assay is a ²H-labelled analogue of prostaglandin F metabolite, in which the ¹H atoms occupy positions 4β, 6α and 6β in the cyclopentane ring. This compound was isolated from the urine of a female Rhesus monkey which had received an intravenous infusion of [8β,10α,10β-²H₃, 9β-³H]prostaglandin F_{2α} (14.5mg). (This labelled precursor was prepared from prostaglandin E₂ by base-catalysed equilibration in [hydroxy-²H]carbitol, followed by reduction with NaB₃H₄, and chromatographic separation of the prostaglandin F isomers obtained.) Purification of the labelled metabolite (yield 1mg), as its methyl ester derivative was achieved by means of liquid-gel partition chromatography (Nyström & Sjövall, 1973; Brash & Jones, 1974).

Fig. 1 summarizes the sequence of steps in the assay procedure. To a portion (10ml) of a 24h urine collection is added the methyl ester of [²H₃]prostaglandin F metabolite (200ng) followed by 5m-NaOH (2ml). Hydrolysis of this methyl ester and of the δ-lactone form of the endogenous metabolite is allowed to proceed at ambient temperature overnight, resulting in equilibration of the two molecular species of prostaglandin F metabolite as the salt of the dioic acid. The urine sample is then acidified to pH 3 and the prostaglandins are extracted on a small column (2g) of Amberlite XAD-2. Elution of the column with methanol, and esterification of the material so obtained with 2% methanolic tetramethylammonium hydroxide and methyl iodide (Greeley, 1974), affords the metabolite as a mixture of its methyl ester and δ-lactone methyl ester derivatives. These compounds are then converted into the 16-monomethyl ester of prostaglandin F meta-
Fig. 1. Analytical procedure for the measurement of 5α,7α-dihydroxy-11-oxotetranor-1,16-dioic acid (prostaglandin F metabolite) in urine

Abbreviation: t-BDMSO, t-butyldimethylsilyl ether.
bolite by overnight reaction with sodium borate buffer (0.1 M, pH 10), a reagent that we have found to effect hydrolysis not only of the δ-lactone structure (Hamberg, 1973), but also selectively at the C-1 methyl ester grouping in the 'open-chain' (5-hydroxy ester) form of the metabolite. The alkaline solution of the 16-monomethyl ester is washed with dichloroethane to remove basic and neutral components of the urinary extract, and is acidified to pH 2. During a period of 1 h under these conditions, virtually quantitative dehydration of the 16-monomethyl ester takes place (A. R. Brash, T. A. Baillie, R. A. Clare & G. H. Draffan, unpublished work) to yield the δ-lactone methyl ester of prostaglandin F metabolite that is extracted into dichloroethane from aqueous solution at pH 8. The above methylation-selective hydrolysis-back-extraction sequence results in a considerable purification of the sample without recourse to time-consuming chromatographic separations.

A survey of a number of potential derivatives for use in the g.l.c.-mass spectrometric analysis of prostaglandin F metabolite revealed that those structures possessing the δ-lactone moiety exhibited poorer gas-chromatographic behaviour and gave rise to more extensive fragmentation than did derivatives of the 'open-chain' form. Of the latter group, the t-butyldimethylsilyl ether methyl ester (Kelly & Taylor, 1976) appeared particularly suitable in view of its ease of preparation, stability towards hydrolysis and to breakdown on t.l.c., and because of the simplicity of its mass spectrum (base peak at m/e 397, [M—57—132]+, Σ 10%; preparation of this derivative from the δ-lactone methyl ester of prostaglandin F metabolite is carried out by methylation under basic conditions (Greeley, 1974) followed by reaction with t-butyldimethylchlorosilane/imidazole/dimethylformamide (Corey & Venkateswarlu, 1972) and purification by t.l.c. (mobile phase: ethyl acetate/n-heptane, 2:3, v/v). Combined g.l.c.-mass spectrometry is performed by using a Varian series 1400 gas chromatograph coupled via a silicone membrane separator to an AEI MS12 mass spectrometer. A column (2 m x 2 mm) of 1% Dextril-300GC is used at a temperature of 270°C with helium (flow rate 20 ml/min) as carrier gas. The mass spectrometer, modified for operation in the selective ion-monitoring mode (Draffan et al., 1973), is operated at an electron energy of 24 eV and basic accelerating voltage of 8 kV. The ion currents at m/e 397 (unlabelled prostaglandin F metabolite) and at m/e 400 (internal standard) are monitored and the ratio of peak heights in the resulting fragment-ion chromatograms is used to calculate the concentration of endogenous prostaglandin F metabolite in the original urine sample. Values in the normal range of 5–40 ng/ml can be measured with 2% precision, whereas values of 1 ng/ml may be determined with an S.D. of approximately 10%. Values obtained for the 24 h excretion of prostaglandin F metabolite in 18 healthy males (12.5–66.9 μg, mean 22.7 ± 13.1 s.d.) and 16 females (7.2–18.8 μg, mean 11.9 ± 3.6 s.d.) are in good agreement with those reported by other authors (Hamberg, 1973; Granström & Kindahl, 1976).

We thank Dr. M. E. Conolly and Professor C. T. Dollery for their interest and encouragement, and Miss S. Doyle for excellent technical assistance. This work was supported by the Medical Research Council.

Draffan, G. H., Clare, R. A. & Williams, F. M. (1973) J. Chromatogr. 75, 45–53
Nystrom, E. & Sjövall, J. (1973) Anal. Lett. 6, 155–161
Samuelsson, B. (1973) Adv. Biosci. 9, 7–14

1976